UVISEL

SE24

Optical Characterization of VO₂ Smart Materials using Spectroscopic Ellipsometry

Céline Eypert, Mélanie Gaillet, Application Scientists HORIBA Scientific

The development of new types of ultra-fast switches operating in the RF-microwave and optical domains is based on the use of a class of materials undergoing fast, reversible phase transitions from a semiconducting state to a metallic one (Semiconductor Metal Transition / SMT). An example of such a material is vanadium dioxide (VO_2).

VO₂ exhibits very fast SMT transition that can be triggered by different external excitations such as temperature change, optical excitation or charge injection. During the phase transition the electrical resistivity of the VO₂ thin film can decrease by several orders of magnitude. Optically the material is transparent in the semiconductor state and highly reflective in the metallic state for a large spectral range (from 1mm up to THz frequencies) (fig1). These remarkable properties can be exploited for optical micro mirrors, modulators, switches and microwave waveguides (see Ref. 1) to overcome the current problems encountered in communication systems (consumption, power handling, slow switching and integration).

This note describes how to characterize the optical properties of VO_2 as it changes phase, with the transition induced by a temperature change.

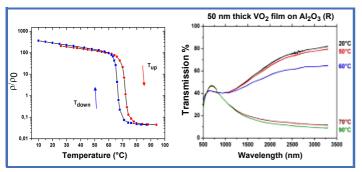


Fig.1: VO₂ SMT transition: electrical (left) and optical (right) properties

Experimental

A HORIBA Scientific UVISEL Spectroscopic Phase Modulated Ellipsometer with temperature cell has been used to characterize the optical properties VO_2 deposited on a sapphire substrate (fig.2&3). The change in the optical constants (n,k) at various temperatures is characteristic of the SMT exhibited by VO_2 . Ellipsometric measurements were performed at a range of temperatures from ambient to 90°C using an angle of incidence of 70° and spectral range 190-2100 nm.

Fig.2: UVISEL with temperature cell

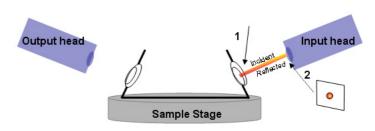
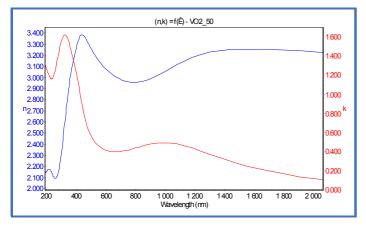


Fig.3: Schematic - positioning the temperature cell

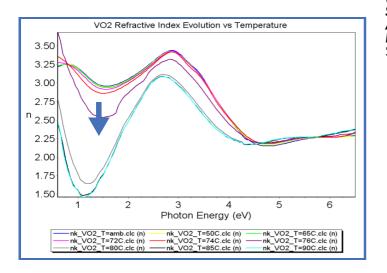
Ellipsometric Modelling and Results

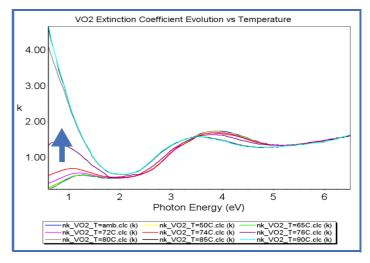
The model used to describe the sample is represented below.

It shows a thin roughness layer (58 Å) at the surface of the VO₂ film that which improves the goodness of fit χ^2 pa-


HORIBA

rameter (from $\chi^2 = 1.3$ to $\chi^2 = 0.2$). As the sapphire is a transparent substrate the model includes automatic backside correction. It also takes into account the anisotropy of the sapphire.


³ F 58.1 🗌 %	FV02_50_T=amb_F.udf	50.00 % ×	Void.ref	50.00 % ×	x
² F 2396.7	FV02_50_T=amb_F.udf			x	x
1 500000.0 E	Al2O3-E_jy.ref			x	x
	Al2O3-O_jy.ref			X	
S	Void.ref			x	


The optical constants of the VO_2 were determined using the Tauc Lorentz dispersion formula with multiple oscillators.

The two graphs below show how the optical constants change as a function of temperature from ambient to $90^{\circ}C$.

One can see that the refractive index decreases and the extinction coefficient strongly increases in the near infra red region. This behaviour is typical for metals.

Conclusion

A HORIBA Scientific spectroscopic ellipsometer equipped with a heating cell allows exploration of material properties as a function of temperature. It is well suited for the characterization of material transitions including thermal transition of polymers, semiconductor metal transition, band structure for compound alloys, thermal hysteresis of magnetic materials, etc...

Acknowledgements

HORIBA Scientific, Thin Film Division thanks Corinne Champeaux and co-workers from SPCTS and XLIM research institutes at the University of Limoges for allowing us to publish this application note on VO_2 optical characterization by spectroscopic ellipsometry.

Ref.1: F. DUMAS-BOUCHIAT, C. CHAMPEAUX, A. CATHERI-NOT, J. GIVERNAUD, A. CRUNTEANU, P. BLONDY, **RF Micro**wave Switches Based On Reversible Metal-Semiconductor Transition Properties Of VO₂ Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices, Materials and Devices for Smart Systems III, Mat. Res. Soc. Symp. Proceedings Volume 1129, P. 275-286, 2009.

www.horiba.com/scientific

USA: +1-732-494-8660 UK: +44 (0)20 8204 8142 China: +86 (0)10 8567 9966

 France:
 +33 (0)1 64 54 13 00
 Ge

 Italy:
 +39 0 2 57 60 30 50
 Jaj

 Other Countries:
 +33 (0)1 64 54 13 00

Germany: +49 (0)89 46 23 17-0 Japan: +81 (0)3 3861 8231

HORIBA

Explore the future