HORIBA Scientific

—Water Quality Measurements Made Easy

ELEMENTAL ANALYSIS

FLUORESCENCE

GRATINGS & OEM SPECTROMETERS

OPTICAL COMPONENTS

PARTICLE CHARACTERIZATION

RAMAN

SPECTROSCOPIC ELLIPSOMETRY

SPR IMAGING

HORIBA

Water quality measurements made easy

The only simultaneous absorbance and fluorescence system for water quality analysis!

HORIBA

Adralog

HORIBA

The new Aqualog is the only instrument to simultaneously measure both absorbance spectra and fluorescence Excitation-Emission Matrices. EEMs are acquired up to 100 times faster than with other instruments. Dedicated software automates traceable Quinine Sulfate Unit calibration and correction of inner-filter effects and Rayleigh and Raman scattering lines, enabling rapid export to multivariate modeling programs including our partner, Solo, by Eigenvector Research, Inc.

Hardware features

- The only true simultaneous absorbance-fluorescence system available
- TE-cooled CCD fluorescence emission detector for rapid data-acquisition up to 100 times faster than any other benchtop fluorometer
- Corrected UV-VIS absorbance detection path for stability and accuracy
- Double-grating excitation monochromator for superior stray light rejection
- Matching bandpass for absorbance and fluorescence spectra
- Automatic sample changer option (2- or 4-position)
- Compatible with flow cells and titrator

Full suite of performance validation tests

- NIST Fluorescence Standard Reference Materials for spectral calibration and correction (SRMs: 2940, 2941, 2942, 2943)
- Starna® Standard Reference Material for Quinine Sulfate Fluorescence Emission Spectral Correction (RM-QS00)
- NIST Absorbance Standard Reference Materials for Ultraviolet-Visible Spectrophotometry (SRM 931g)
- Starna® Standard Reference Materials for Ultraviolet-Visible Spectrophotometry (RM-06HLKI)
- Water Raman signal-to-noise evaluation

Explore the future

Software Features

- Optimized experiment set-up menus minimize user configuration time
- Complete NIST-traceable corrected fluorescence spectra automatically generated
- Spectral and kinetic analysis tools for both absorbance and fluorescence data
- Methods and batch protocols for automating multiple sample measurement

Experimental Menu

- Absorbance spectra
- Absorbance kinetics
- Fluorescence emission spectra
- Fluorescence emission spectra kinetics
- Combined fluorescence emission spectra and absorbance kinetics
- Fluorescence excitation-emission matrices (EEMs)
- Combined excitation-emission matrices and absorbance spectra
- Trigger-enabling
- Sample Queue tool for collection of continuous EEMs plus absorbance spectra, correction, and export for up to 1000 samples without interruption. Compatible with multi-position sample changers, operation of flow-through cells and autosamplers. Automated generation of component identification and quantification tables using Eigenvector's Solo Predictor package!

Built-in Tools for EEM Analysis

- Correction of inner-filter effects
- Rayleigh-masking of first and second orders
- Normalization (Quinine Sulfate Units or Raman scattering units)
- Multivariate analysis, including PARAFAC (parallel factor analysis)
- Batch export of EEMs
- · 2-Dimensional excitation and emission extraction of spectral profiles from EEMs

Multivariate Analyses with Our Partner, Eigenvector

Save hours of data processing with the combined power of HORIBA Scientific's new Aqualog[®] and Eigenvector's Solo software! Simply import your fully corrected excitation-emission matrix (EEM) data directly from the HORIBA Scientific Aqualog[®] into Eigenvector's Solo software to rapidly perform PARAFAC and many other multivariate analyses pertinent to colored dissolved organic matter (CDOM).

The Aqualog[®] package performs all necessary spectral corrections. Quickly assemble EEMs into convenient DataSet objects to easily manage labels, axis scales, and classes, and include or exclude data from the analysis with a simple click.

Solo provides the graphical interfaces to quickly manage and analyze EEM data, create and apply models, and interpret results.

HORIBA

Sample Q File					Load	
C:\Users\Public\Doc	uments\Jobin Yvon\	Data V Aqualog Sampl	eQ aqu		Save	Save As
Experiment File						
C:\Users\Public\Doc	uments/Jobin Yvon/	Data\DftAqualogTh	reeDCCDAbs.xml		Browse	Create
Comment						
Autput File Names						
Blank Group Prefix	Blank Base	Sample Prefix	Example Group001Bld			
Group	Blank	Sample	Output:	Group001Sample0	01ABS.dat	
Output Folder						
C:\Users\Public\Doc	uments\Jobin Yvon\	Data				Browse
ample Setup Number of Blank Gro	ups 1 0	Samples Per Blan	k 1 0	Before First Blank	0	50C5 -
Rlack Group Start #	1	Sample Start #	1 (4)	Between Each	0	
Tatel Canadaa 2		ourpre outre		Experiment		
rotal Samples. 2						
ost Processing Option	18		Export Options			
IFE Rayleigh Masking 1st Order SIM of slit widths		Save Raw Data in Workbook Format (*.ogw)				
		Export ASCII				
	2nd Order	10	Save ASCII	(*.dat)		
	2nd Order		Worksheets	S	smple - Blani	k Raw
IV Normalize			1 2T		XII	XYZ
(a) returning at a			E Blank X	rr s	ample - Blank	k Processed
C Mar			Sample :	KYY I	XXX S	XYZ
 Max Normalization 	on Factor					

Chlorophyll from Algae

Aqualog Water Quality Applications

Measure the full UV to NIR spectrum of water contaminants

Ideal for quantitative hydrologic studies with tracer dyes, using:

- Resazurin-resorufin
- Fluorescein
- Rhodamine
- Pyranine

CDOM applications:

- Membrane fouling (microfiltration, reverse osmosis)
- Microbial and algal activity
- Carbon fate and cycling activity

Oils and PAHs

Quantum Dots

HORIBA

Fluorescence Hardware Specifications

Parameter	Specification			
Choice of light source	Standard: 150 W ozone-free vertically mounted xenon arc lamp	Extended-UV: 150 W vertically mounted xenon arc lamp		
Excitation range	230 nm to upper limit of emis- sion detector	200 nm to upper limit of emis- sion detector		
Excitation bandpass	5 nm			
Excitation monochromator	Subtractive double monochromator			
Excitation gratings	1200 gr/mm; 250 nm blaze			
Excitation wavelength accuracy	±1 nm			
	·			
Choice of detector	UV-Visible	Red-extended		
Emission range	250–620 nm	250–800 nm		
Emission grating	405 gr/mm; 250 nm blaze	285 gr/mm; 350 nm blaze		
Hardware pixel-binning	0.41, 0.82, 1.64, 3.28 nm/pixel	0.58, 1.16, 2.32, 3.64 nm/pixel		
Emission bandpass	5 nm			
Emission spectrograph	Fixed, aberration-corrected 140 mm focal length			
Emission detector	TE-cooled back-illuminated CCD			
Emission integration time	5 ms minimum			
CCD gain options	2.25 e [−] /cts in high gain, 4.5 e [−] /cts in medium gain, 9 e [−] /cts in low gain			
Sensitivity	Water-Raman SNR > 20 000:1 (RMS method) (350 nm excitation, 30 s integration)			
Weight	33 kg (72 lbs)			
Dimensions	L × W × H (618 × 435 × 336 mm); (24" × 17" × 13")			

Absorbance Hardware Specifications

Parameter	Specification			
Scanning range	200–800 nm (UV lamp)			
	230–800 nm (Standard lamp)			
Bandpass	5 nm	5 nm		
Slew speed	Maximum 500 nm/s			
Optical system	Corrected single-beam			
Detector	Si photodiode			
Wavelength accuracy	±1 nm			
Wavelength repeatability	+/- 0.5 nm			
Photometric accuracy	±0.01 AU from 0 to 2 A			
Photometric stability	<0.002 AU per h	~		
Photometric repeatability	+/- 0.002 AU (0 to 1 AU)			
Stray light	<1% measured with KI standard	F lechnology		

www.Aqualog.com

info.sci@horiba.com

USA: +1 732 494 8660 **UK:** +44 (0)20 8204 8142 **China:** +86 (0)10 8567 9966

France: +33 (0)1 69 74 72 00 Italy: +39 2 5760 3050 Brazil: +55 (0)11 5545 1514 Germany: +49 (0) 89 4623 17-0 Japan: +81 (0)3 6206 4717

+33 (0)1 64 54 13 00

HORIBA

www.horiba.com/scientific

Other:

Explore the future